【用户案例】AI 大模型独角兽 MiniMax 基于 Apache Doris 升级日志系统,PB 数据秒级查询响应

Viewed 50

MiniMax 是领先的通用人工智能科技公司,自主研发了不同模态的通用大模型,其中包括拥有万亿参数的 MoE 文本大模型、语音大模型以及图像大模型。MiniMax 以“与用户共创智能”为愿景,通过对大模型持续迭代,MiniMax 在国内率先完成核心 MoE 算法技术路线的突破。2024 年 4 月,公司推出国内首个上线商用的 MoE 架构、包含万亿参数的大语言模型——“MiniMax-abab 6.5”,模型性能接近国际领先水平。

随着模型复杂度以及模型调用量的不断提升,模型训练及推理产生的运行日志也在激增,这些数据对于 AI 应用的运行监控、优化及问题定位至关重要。早期 MiniMax 基于 Grafana Loki 构建了日志系统,在资源消耗、写入性能及系统稳定性上都面临巨大的挑战。为此 MiniMax 开始寻找全新的日志系统方案,并对业界具有代表性的技术栈 Apache Doris 和 Elasticsearch 进行了对比,Apache Doris 在性能、成本以及易用性等方面均优于 Elasticsearch,因此最终选择了 Apache Doris 来构建日志系统。

目前基于 Apache Doris 的新系统已接入 MiniMax 内部所有业务线日志数据,数据规模为 PB 级, 整体可用性达到 99.9% 以上,10 亿级日志数据的检索速度可实现秒级响应。

欢迎阅读原文查看详情:
AI 大模型独角兽 MiniMax 基于 Apache Doris 升级日志系统,PB 数据秒级查询响应

1 Answers

原文节选:

未来规划

未来 MiniMax 将持续迭代日志系统, 并重点从以下几方面发力:

  • 丰富日志导入预处理能力:增加日志采样、结构化等预处理能力,进一步提升数据的可用性及存储性价比。
  • 增加 Tracing 能力:尝试将监控、告警、Tracing、日志等各方面的可观测性系统打通,以提供全方位的运维洞察。
  • 扩大 Doris 使用范围:除日志场景之外,Doris 逐步被引入数据分析和大数据处理场景下,助力后续构建数据湖仓能力。